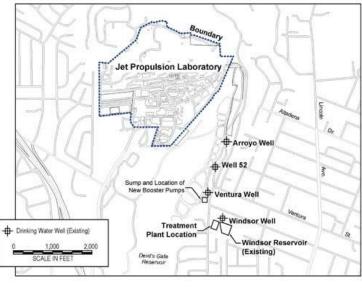


10th Annual Workshop on Environment and Alternative Energy

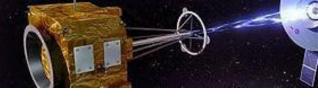

Christyl C. Johnson
GSFC Deputy Director for Science and Technology
Dennis J. Andrucyk
Director of Engineering

Our Nation's History with Propellants



Toxic Propellant Risks/Danger

Toxic Propellant Risks/Danger



Columbia Accident February 1, 2003

"Green" Propellants Needed

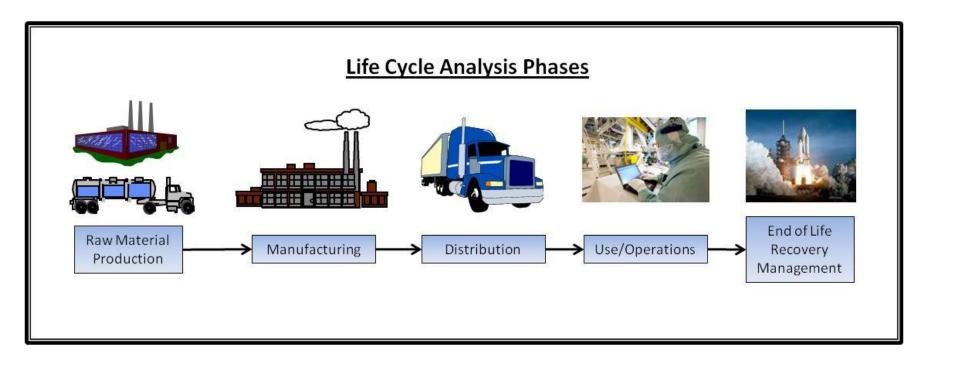
NASA Options Study Cost Analysis

Cost Methodologies

Cost Element	Method
CEV SM DDT&E & Production -Propulsion Subsystem -All Other Subsystems	Component Cost Model ARCOM
LSAM DDT&E & Production -Ascent Stage Propulsion Subsystem -All Other Subsystems	Component Cost Model NAFCOM
EDS DDT&E & Production	NAFCOM
Ground Processing	KSC Bottoms-up Assessment
Technology Development	Combination of Existing Contracts, Past Estimates, and Expert Option

Costs Compiled and Phased Using the SAIC Life Cycle Cost Integration Model

Propellant Options


- Option 1: Constellation Baseline (Hypergols)
- Option 2: Lox/Methane on CEV SM and LSAM Ascent Stage
 - Option 2a: Baseline Lox/Methane
 - Option 2b: Lox/Methane and Hypergol Dual Development Program through PDR, Drop Hypergols at PDR
 - Option 2b+: Block Upgrade CEV SM to Lox/Methane for Lunar Missions, Use Lox/Methane for LSAM Ascent Stage
- Option 3: Lox/LH2 on CEV SM and LSAM Ascent Stage
 - Option 3a: Baseline Lox/LH2
 - Option 3b: Lox/LH2 and Hypergol Dual Development Program through PDR, Drop Hypergols at PDR
 - Option 3b+: Block Upgrade CEV SM to Lox/LH2 for Lunar Missions, Use Lox/LH2 for LSAM Ascent Stage
- Option 4: Mixed Hypergolic and Alternative Propellants
 - Option 4a: Hypergolic SM, and LSAM RCS; Lox/LH2 LSAM Ascent Stage Main Engine
 - Option 4b: Hypergolic Integrated SM and LOX/Methane Integrated LSAM Ascent Stage Main Engine

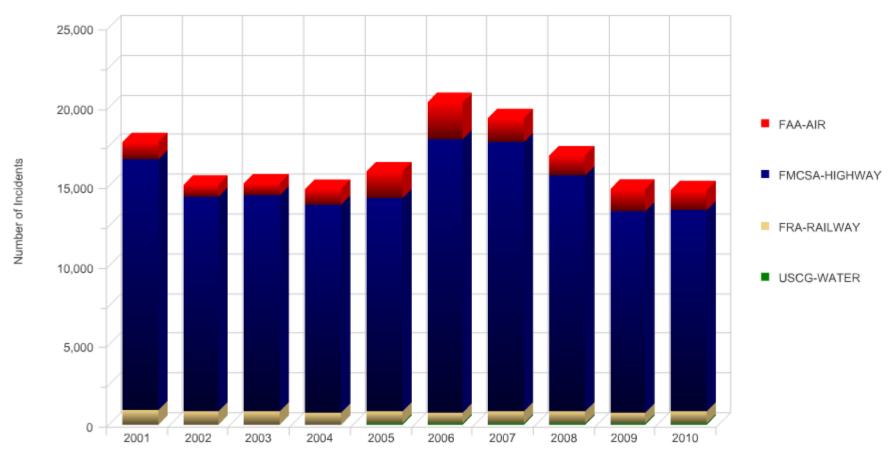
Decision:

Risk too great and return on investment not sufficient to support a commitment to wholesale investment in "green" technologies for propellant systems now

Life Cycle Analysis

Toxic Propellant Risks/Danger

Worker Exposure/ Occupational Safety Concerns



Case Study: Transportation Incidents

Hazardous Materials Transportation Incidents Happen Frequently

All Incidents by Mode and Incident Year

Incident Occurred Year

Source: U.S. Department of Transportation Hazmat Intelligence Portal, retrieved November 2011

Case Study: Transportation Incidents

Financial Costs of Hazardous Materials Transportation Incidents

Incidents By Mode and Incident Year

Mode Of											
Transportation	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	Grand Total
FAA-AIR	1,083	732	750	993	1,654	2,406	1,556	1,278	1,356	1,293	13,101
FMCSA-HIGHWAY	15,804	13,502	13,594	13,068	13,461	17,162	16,930	14,804	12,730	12,645	143,700
FRA-RAILWAY	899	870	802	765	745	703	753	749	643	751	7,680
USCG-WATER	6	10	10	17	69	68	61	99	90	105	535
Grand Total	17,792	15,114	15,156	14,843	15,929	20,339	19,300	16,930	14,819	14,794	165,016

Damages By Mode and Incident Year

Mode Of											
Transportation	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	Grand Total
FAA-AIR	\$309K	\$109K	\$100K	\$188K	\$198K	\$671K	\$88K	\$191K	\$708K	\$20K	\$2,583,290
FMCSA-HIGHWAY	\$47.7M	\$48.1M	\$49.1M	\$47.2M	\$40.2M	\$59.5M	\$47.3M	\$42.8M	\$50.6M	\$63.8M	\$496,233,940
FRA-RAILWAY	\$21.2M	\$9.75M	\$4.13M	\$13.9M	\$15.5M	\$10.7M	\$27.3M	\$8.03M	\$17.5M	\$7.36M	\$135,466,997
USCG-WATER	\$147K	\$248K2	\$261K	\$1.65M	\$114K	\$58.8K	\$19,097	\$138,350	\$100,887	\$574,103	\$3,316,416
Grand Total	\$69.4M	\$58.2M	\$53.6M	\$62.9M	\$55.9M	\$71.0M	\$74.7M	\$51.2M	\$69.0M	\$71.7M	\$637,600,643

Source: U.S. Department of Transportation Hazmat Intelligence Portal, retrieved November 2011

Railway Avg: \$17638 per incident. Water Avg: \$6199 per incident.

Highway Avg: \$3453 per incident. Air Avg: \$197 per incident

Case Study: Transportation Incidents

Human Costs of Hazardous Materials Transportation Incidents

Injuries By Mode and Incident Year (people transporting or responding to incidents)

Mode Of											Grand
Transportation	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	Total
FAA-AIR	13	4	1	11	44	2	8	7	10	2	102
FMCSA-HIGHWAY	109	118	105	155	178	192	160	153	153	153	1,476
FRA-RAILWAY	46	14	13	122	693	25	57	63	38	13	1,084
USCG-WATER	0	0	0	0	0	15	3	0	0	2	20
Grand Total	168	136	119	288	915	234	228	223	201	170	2,682

Fatalities By Mode and Incident Year

Mode Of											Grand
Transportation	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	Total
FAA-AIR	0	0	0	0	0	0	0	0	0	0	0
FMCSA-HIGHWAY	9	9	15	11	24	6	9	6	11	8	108
FRA-RAILWAY	3	1	0	3	10	0	0	1	1	0	19
USCG-WATER	0	0	0	0	0	0	0	3	0	0	3
Grand Total	12	10	15	14	34	6	9	10	12	8	130

Source: U.S. Department of Transportation Hazmat Intelligence Portal, retrieved November 2011

Railway Avg: 1 injury every 7.1 incidents and 1 fatality every 404 incidents

Water Avg: 1 injury every 27 incidents/1 fatality every 178 incidents.

Highway Avg: 1 injury every 97 incidents/1 fatality every 1330 incidents.

Air Avg: 1 injury every 128 incidents/0 fatalities every 13100 Incidents.

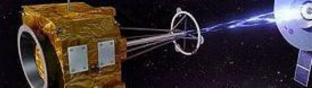
Case Study: SeaCliff Derailment

July 28, 1991 Rail Incident

Train traveling on Southern
 Pacific line in Ventura County, CA derailed beneath Highway 101.

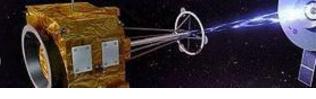
A sulphuric acid spill due to a train derailment

- A car carried eighty 55 gallon containers of aqueous hydrazine.
- 23 of the hydrazine drums (1265 gallons) ruptured or leaked.
- Ventura County Fire/Environmental Health Departments responded.
- Highway 101 was closed for 6 days.
- Over 300 residents of Seacliff Beach Colony located 100 feet away from the derailment were evacuated from their homes.
- Rail worker was sickened after inhaling fumes.
- Response was stalled by confusion manifest met requirements but did not list chemical names, quantity, or container type.
- 49 homes were evacuated for nearly a full week.


Case Study: SeaCliff Derailment

Final Cost: **\$750,000+ (at least)**

- \$435,167 to Ventura County Fire Department
- \$200,000 split among Ventura/Oxnard Fire Depts & County Health Department
- Remainder to California EPA and other agencies
- Legal Costs Unknown: 22 settlements to Seacliff residents
 - 338 other claims rejected, most related to inconvenienced drivers.
 - A railway worker has also sued in relation to the incident.
- A derailment nearby involving the same company during the same two week period caused toxic chemicals to spill into the Sacramento river – the total resulting cost (including legal) was over \$44 Million. (pesticides – killed most wildlife within the vicinity)


Environmental Life Cycle Costs

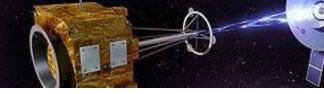
Must be factored into the Life Cycle Cost Analysis......

How do we determine which environmental parameters to include for future NASA decisions?

SITE VISITS – NASA (Kennedy /Wallops)

NASA's Wallops Flight Facility

NASA's Kennedy Space Flight Center



Ammonium Dinitramide (ADN)

- Solid white salt
- No chlorine content
- High performance
- Readily soluble in water


Invented in 1997 by the Swedish Space Corporation (SSC) and the Swedish Defence Research Agency (FOI).

ADN Methanol Ammonia Water

LMP-103S Storable Monopropellant **ADN** Fuel + Stabilizer Solvent + N(NO₂)₂-**Exhaust species** H₂ CO, CO N₂

 $NH_4 \cdot N(NO_2)_2$

SITE VISITS - Sweden

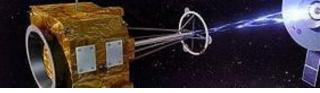
Environmental Cost Elements

X	0	1-	
)	
/ 1/			1

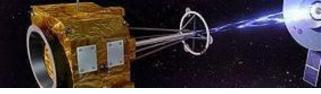
ENVIRONMENTAL UNACCOUNTED FOR COST ELEMENTS	HYDRAZINE	HPGP
MANUFACTURING AND STORAGE		
A. General Safety Considerations:		
 Safety training for all site 	40 hours minimum	1 hour per
personnel	(\$375/person +	facility/building
	\$70/person annually	
	for mandatory	
	refresher)	
2. Medical monitoring	Annual	N/A
	Comprehensive	(non-hazardous
	Medical Exam	operation)
Hand-held communication	Walkie Talkies	N/A
devices for emergency and	(~\$60/pair) Satellite	(non-hazardous
auxiliary use	Phones (~\$1100 ea.)	operation)

B. Site Control and Access:		
 Entrance to facility controlled 	24 hours/day	N/A
by guard station	(\$300K/yr or up to	(non-hazardous
	\$3M to build new one)	operation)
Exclusion zone (no one allowed	Additional square	N/A
inside w/o specific need and	footage, access	(non-hazardous
training/certification)	control, and	operation)
-	decontamination	
	requirements (not	
	quantified)	
3. Contamination reduction zone	Additional square	N/A
	footage and	(non-hazardous
	decontamination	operation)
	requirements (not	
	quantified)	
	1	
C. Air Monitoring:		
 Permanent air monitoring 	Inside and around	Not required
stations installed	manufacturing	
	facilities	
2. Station monitoring	24 hours/day	Ammonia sensors are
		adequate (unmanned)
Calibration and maintenance of	Calibration performed	Regular intervals
monitoring equipment	at the beginning of	
	each work day	
 Personal dosimeter badges 		Not required

D. Perso	nal Protective Equips	nent (PPE)		
	ople in the storage ta			
1.	If no leaks have occ		SCAPE suit required	
•	Work coveralls)		Required
•	Steel-toed boots	or use		Not required
•	Surgical glove	SCAPE Suit		Required
•	Hard hat	J		Not required
•	Visor or Safety Gla	sses		Required
2.	If there is an uncont		SCAPE suit required	Gas mask required in
	exposure to the haz	ardous		case of major leak
	material -			
•	1) ven suits			
•	Steel-toed boots			
•	Overboots	or use		
•	Inner and outer glov			
•	Hard hat	SCAPE		
•	Respiratory protecti	on J Suit		
	tamination Procedur			
1.	Each individual mu			N/A
	decontaminated bef	ore leaving		(non-hazardous
	the exclusion zone			operation)
•	Wash the outer PPE gross contamination		SCAPE suit cleaning or disposal	N/A (non-hazardous operation)
•	Removal and dispos	al of the PPE		Discard gloves only
	Shower prior to ent other part of the fac			Not required
•	Washtubs, brushes, citric acid must be decontamination	water, and		Not required
•	Wash water must b and treated before o			N/A (non-hazardous operation)
•	Used PPE's must be numbered and labe be stored onsite (no PPEs)	led barrels to		N/A (non-hazardous operation)

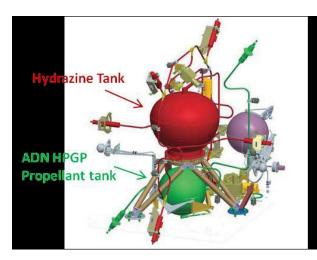

Environmental Cost Elements

	0	1	
)	
1 1			


-		
F. Storage		
 Special storage containers for 	DOT-4BW	Opaque plastic
hazardous materials		container acceptable
2. Special temperature control	Store at temps below	Long-term storage:
capability	51 C (123 F).	10-50°C (50-122°F)
		Short-term storage: -
		5-70°C (41-156°F)
3. Special pressurized containers	Can be packaged only	Plastic container with
	in Teflon high density	latching lid
	polyethylene or	acceptable (not
	stainless steel	compatible with
	containing less than	aluminum tanks)
	0.5% molybdenum.	· ·
	Must use nitrogen	
	blanket.	
SHIPPING/TRANSPORTATION		
A. Rail:		
Special transporter	FORBIDDEN	Yes
training/certification		
2. Special storage/shipping drums	N/A	UN 1.4S
B. Sea Vessels (Ship):		
Special transporter	Yes	Yes
training/certification		
2. Special storage/shipping drums	DOT-4BW	UN 1.4S
C. Air:	Commercial	Allowed on
	Passenger	commercial
	FORBIDDEN	passenger aircraft
Special transporter	N/A	Yes
training/certification		
2. Special storage/shipping drums	N/A	UN 1.4S
D. Public Highways:		
Hazmat Cargo tank trailers	Yes	No
Special drivers' certification	Yes	Yes
Transporter liability insurance	Yes	Yes
4. Special storage/shipping drums for	DOT-4BW	UN 1.4S
smaller quantities	DOITE	011 1.40
Jananer quantities	+	
	+	
<u></u>	1	ļ

FACILITY OPERATIONS &		
MAINTENANCE		
Construction (to meet safety	Required	Required
specifications)	required	Required
Air scrubbers (installation & operation)	Required	Not required
Spill handling & disposal (catchment	Required	Required
tanks)		
4. Annual facility certifications &	Required	Required
inspections		
Mandatory safety personnel (fire,	Required	N/A
medical, etc.)		(non-hazardous
		operation)
6. A minimum of 2 people must be present	Required	Not required
during all hydrazine facility operations (2		
additional people must be in SCAPE suits		
on standby during hazardous fueling		
operations)		
7. Fueling Operations:		
a. Safety requirements		
 Range safety personnel support 	Required	Required
 Medical personnel 	Required	N/A
		(non-hazardous
		operation)
 Fire personnel 	Required	N/A
		(non-hazardous
		operation)
 b. "Down time" of all launch campaign 	Required	N/A
personnel not involved in hazardous		(non-hazardous
fueling operations		operation)
 Ground support equipment 		
refurbishment and preparation		
 Fueling cart decontamination 	Req'd/Comprehensive	Limited
 Drum decontamination 	Req'd/Comprehensive	Limited
 Replacement of facility spill 	Req'd/Comprehensive	Limited
catchment tanks (if necessary)		

Environmental Cost Elements

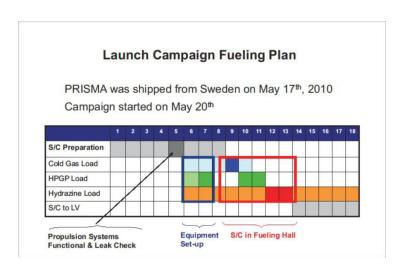

END OF LIFE DISPOSAL		
A. Propellant End of Use:		
Disposal of contaminated objects Disposal of residual propellant/waste	See pages 71-73	Flush with water (wastewater treated as non-toxic waste) Controlled burn with
		absorbent
Propellant drum return	DOT-4BW	Non-hazardous
B. Facility Decommissioning:		
1. Hazard Reduction		Not required
Liquid waste handling and disposal	See descriptions on	Flush with water (wastewater treated as non-toxic waste)
3. Dismantling and demolition	pages 71-73	Flush with water (wastewater treated as non-toxic waste)
4. Site restoration		Not required
- Decontamination and removal of equipment and subsequent revegetation of the grounds after demolition debris and solid wastes are removed		Not required
- Postclosure vegetation maintenance		Not required

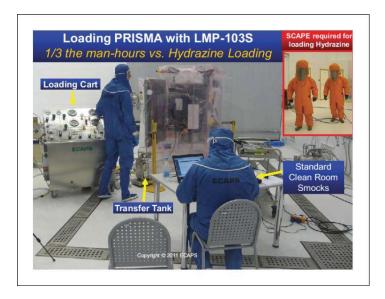
MISSION OVERVIEW

- Demonstration mission focused on formation flying and rendezvous technology in space environment
- Swedish Space Corporation, Swedish National Space Board, OHB Sweden, German Aerospace Center (DLR), French National Space Center (CNES), and the Technical University of Denmark

- Two spacecraft Mango and Tango
- Mango has two
 monopropellant systems –
 a hydrazine baseline and a
 High Performance Green
 Propellant using LMP103
 (ADN)

TRANSPORTATION OF PROPELLANT


- Prisma spacecraft and the HPGP propellant were flown by commercial aircraft from Sweden to the launch facility in Russia
- Hydrazine could not be shipped via aircraft, so it was transported from Germany to St. Petersburg on a ship, and then transported by truck to the Russian launch facility - months in advance of the launch campaign.



HANDLING AND OPERATIONS DURING LAUNCH CAMPAIGN

- SCAPE suits not required
- HPGP loading process took seven days with 2 specialists and 1 part-time technician
- Hydrazine loading took 14 days with 5 mission specialists and more than 20 support specialists (more than 3 times the manpower)
- Hydrazine waste 8 gal of hydrazine, 105 gal of contaminated deionized water, and 18 gal isopropyl alcohol. Hazardous waste procedures had to be followed.
- HPGP waste ¼ gal of propellant and ¾ gal of isopropyl alcohol/de-ionized water (considered non-toxic). Disposal of these wastes was provided at no charge because of the non-toxic classification

PRISMA Launch Campaign Environmental Hazards Hydrazine HPGP

	Hydrazine	HPGP LMP-103S
PRISMA Campaign	470 kg toxic waste	3 kg <u>non-toxic</u> waste
	29 kg propellant waste	1 kg propellant waste

PRISMA HPGP to Hydrazine Cost Comparison

PHASE E - S/C Propellant Loading	HPGP	HYDRAZINE
Management, I/F & Config Control	€ 21,340	
Fueling Procedure	€ 12,371	
Range Safety Documents	€ 12,371	
Launch Site Visit, I/F & Range Safety Review	€ 6,186	
Travel and Subsistence	€ 1,546	
Crew Training and Cerification	€ 7,423	
Mgmt & Engineering Subtotal (as above)	€ 61,237	€ 144,289
GSE Referb & Prep	€ 37,113	€ 46,000
Launch Site Activities	€ 38,435	€ 139,754
Propellant and Propellant Shipping Cost	€ 21,031	€ 130,100
GSE and Consumables Transport	€ 9,996	€ 19,992
Propellant Disposal and Propellant Drum Return	€0	€ 29,282
Grand Total (Euros)	€ 167,813	€ 509,417
Grand Total (US Dollars) 0.78 EUR/USD (Launch Campaign in July 2010)	\$215,144	\$653,099

Savings as compared to Hydrazine:

\$437,955

(over 2/3 cost reduction)

Summary of Observations

- Biggest environmental cost drivers over the life cycle of the propellant are facility operations and maintenance, transportation, and end of life disposal
- Costs associated with health and human safety protection while operating with hazardous materials are major cost drivers for propellant selection
- When environmental costs are included in the analysis, one can potentially bridge the gap between traditional investment and return on investment models in a timeframe that can be acceptable to investment decision-makers
- This research adds significant data to the full picture needed to complete the business case for green propulsion, however additional work is needed

10th Annual Workshop on Environment and Alternative Energy

Christyl C. Johnson
GSFC Deputy Director for Science and Technology
Dennis J. Andrucyk

Director, Applied Engineering and Technology